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ABSTRACT 
The fundamental challenge faced by any visual system within 
natural environments is the ambiguity caused by the fact that 
light that falls on the system’s sensors conflates multiple 
attributes of the physical world. Understanding the 
computational principles by which natural systems overcome 
this challenge and generate useful behaviour remains the key 
objective in neuroscience and machine vision research. In this 
paper we introduce Mosaic World, an artificial life model that 
maintains the essential characteristics of natural visual 
ecologies, and which is populated by virtual agents that – 
through ‘natural’ selection – come to resolve stimulus ambiguity 
by adapting the functional structure of their visual networks 
according to the statistical structure of their ecological 
experience. Mosaic World therefore presents us with an 
important tool for exploring the computational principles by 
which vision can overcome stimulus ambiguity and usefully 
guide behaviour.   

Categories and Subject Descriptors 
I.2.10 [Artificial Intelligence]: Vision and Scene 
Understanding – modeling and recovery of physical attributes, 
perceptual reasoning. 

General Terms: Algorithms 

Keywords 
Vision Evolution, Ambiguous Environments, Mosaic World 

1. INTRODUCTION 
While computers can outplay the top chess Grandmasters, they 
cannot recognise a flower in a meadow with the same 
proficiency of a bumblebee. The reason is that, unlike 
computers, the bee’s miniature brain, which is made up of 240 
times fewer neurons than humans have retinal receptors, has – 
like all natural visual systems – adapted to resolve the most 

fundamental challenge of natural visual ecology, which is that 
light stimuli are fundamentally ambiguous with respect to their 
natural provenance. 

Though seemingly counterintuitive, since our internal 
representation of the world seems so unambiguous, consider (i) 
that the world is composed of many kinds of objects under many 
different kinds of lights, and (ii) that vision does not have direct 
access to that world. Rather, the only information that any visual 
system has access to is the light that falls on its eye/sensors (i.e., 
stimuli). Now, assuming that useful vision requires generating 
behaviour according to the sources of stimuli, then we have 
what seems an impossible problem. The problem is this. The 
quality and intensity of any stimulus is determined from both an 
object’s reflectance and illumination simultaneously. Since 
changing either parameter changes the stimulus accordingly, 
there is no way to deduce from the stimulus itself its underlying 
source, which could be any number of different 
reflectance/illumination combinations. Thus, the task of 
recognising an object under different illuminants is like solving 
the equation x • y = z for x without ever knowing y. And yet, 
natural systems – from bees to humans – solve this problem 
continuously when recognising objects in natural environments. 
Understanding how this is achieved is essential to understanding 
natural vision, and for creating successful artificial visual 
systems. 

While the physiological mechanisms are currently unknown, 
recent neuroscience research suggests natural systems overcome 
the problem of stimulus ambiguity by generating visual 
behaviour probabilistically, by shaping the functional structure 
of visual processing empirically in ontogeny and phylogeny 
(Lotto and Purves, 1999, 2000, 2001; Purves and Lotto, 2003). 
The premise of this hypothesis is that to be useful, vision need 
not accurately represent the world, but generate statistical 
constructs based on what proved useful in past experience. If 
correct, then to understand vision will require understanding in 
quantitative terms of the statistical relationship between images, 
their behavioural consequences in past experience, and the 
functional structure of adaptive network systems, information 
which is unknown, if not unknowable in natural systems. It is 
within this context that Artificial Life presents us with a 
necessary tool for prosecuting the empirical basis of vision. 

Indeed, researchers in many fields have used A-Life models to 
explain biological phenomena, such as – but not limited to – 
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Constants: 

- CLUST_PARAM = [0,1], the probability of new 
surfaces being identical to neighbours. 

- SHADE_PARAM = [0,1], similarity factor of 
non-identical surfaces to neighbours.  

- POS_RES_PARAM = [0,1], the probability of 
generating a positive surface/resource. 

- NEG_RES_PARAM = [0,1], the probability of 
generating a negative surface/resource. 

Method of operation: 

(1) An empty world without any surfaces is created. 

(2) A predefined number of surface seeds are generated. 
Every seed is placed in a random location in the 
world and is initialised with a reflectance using 
POS_RES_PARAM and NEG_RES_PARAM (or 
alternatively, a random reflectance is initialised).  

(3) New surfaces are being ‘thrown’ into the world at 
random locations. If there are no adjacent surfaces 
near a new surface, it is removed from the world. 

(4) If there are one or more adjacent surfaces, the new 
surface gets a reflectance influenced by one of its 
neighbours, randomly chosen. 

(a) Using CLUST_PARAM, the new surface is 
deemed to be identical or not to its 
neighbours. E.g. A value of 0 determines that 
there’s 0% it’ll be identical to one of its 
neighbours, and 100% it’ll be non-identical. 

(b) If the new surface is deemed to be non-
identical to its neighbour, using 
SHADE_PARAM it is determined how 
similar it would be: A value of 0 determines 
that every wavelength in the reflectance 
function will be randomly changed by 0 (so 
it’ll be identical to its neighbour), a value of 
1 determines that every wavelength in the 
reflectance function will be randomly 
changed by -1 to +1 (so it’ll probably be very 
different from its neighbour).  

(5) This process is iterated until all the surface positions 
have been created. 

(6) Measure world statistics: unless within defined 
ranges, go back to step (1). 

ecological dynamics of growing plants (Dyer et al, 2001; Dyer 
and Bentley, 2002), sexual selection (Collins and Jefferson, 
1992), foraging behaviour of Anolis lizards (Koza et al, 1992), 
and even war and peace between virtual nations (Unemi et al, 
2003). Within the context of vision research, Liese et al (2001) 
created an A-Life simulation in which virtual light sensors 
evolved according to whether or not they obtained sufficient 
light from their environment. In another model, Kortmann et al 
(2001) evolved a population of visuo-motor systems to 
investigate the trade-off between spatial and temporal resolution 
that occur in biological systems. Finally, Terzopoulos and Rabie 
(1995) created a realistic simulation of a population of artificial 
fish to facilitate “…active vision research”. 

While the above visual A-Life models were useful in their own 
right, they did not, nor could they help us to address questions 
about how natural vision systems deal with stimulus ambiguity. 
Mosaic World was therefore created to overcome this obstacle 
by preserving these essential characteristics of natural visual 
ecology. 

2. SYSTEM 
Mosaic World is an A-Life, virtual environment made up of 2D 
‘coloured’ surfaces under simple-to-complex patterns of 
‘coloured’ illumination. The virtual agents, the ‘critters’, that 
inhabit Mosaic World have one task: to survive, which they do 
by eating good resources and avoiding bad ones. Furthermore, 
as a stable population requires new members, the agents 
multiply through sexual and asexual reproduction. The 
behaviour of each agent is controlled by an artificial 3D neural 
network. All attributes of the networks – from receptor number 
and spectral sensitivity, to hidden node number, to the 
connections between the nodes – are evolvable. 

2.1 Environment 
The ground matrix of Mosaic World is made up of 100x100 
‘surfaces’. Beyond the edges of the world, there is nothing: A 
critter attempting to travel more than one surface beyond the 
edge dies. Within the surface matrix, there are holes. Entering a 
hole has the same effect as stepping over the world’s edges. 

Every surface is defined in terms of its location and reflectance 
function, which describes its proficiency at reflecting 
wavelengths within the range of visible light (400 to 700 nm). 
Because Critters ‘eat’ surfaces, or more specifically their 
constituent wavelengths, a surface’s reflectance function 
determines its resource value, and hence its behavioural 
relevance: A surface that reflects wavelengths that the 
experimenter decides are ‘good’ will add positively to the 
agent’s resource intake, whereas eating from surfaces that reflect 
only ‘bad’ wavelengths will add negatively to the agent’s 
resource intake. As a surface is ‘consumed’, it becomes 
increasingly less reflective, and hence more transparent, 
eventually becoming invisible. Through time it will regenerate 
its reflectance at a rate pre-determined by the experimenter. 

In nature, because objects and illuminants are extended in space, 
two neighbouring points in any image are more likely to have 
the same physical characteristics than are two points further 
away from each other. To model this statistical relationship in 
Mosaic World, a CA (cellular automata) algorithm was created 
that enables complete control over such clustering across the 

ground matrix (see Figure 1 for algorithm description), as well 
as the relative proportion of negative-to-positive wavelength 
resources in the world. Thus, the surface matrix can be 
customised in terms of reflectance/illumination size, which can 
vary from one pixel to the entire world, as well as each clusters’ 
shading, which can be gradual changes to random transitions. 

Figure 1: The Shading/Clustering algorithm

116



 

 

 
Figure 2: A few sample worlds. [a] Large clusters, uniform ‘white’ illumination. [b] Same world as [a] with multiple illuminants. [c] 
Many small clusters, uniform ‘white’ illumination, 3 holes. [d] Same world as [c] with multiple illuminants 

Illumination of Mosaic World is controlled by simulated external 
light sources, each modelled as a discrete wave function in the 
range between 400nm and 700nm. The spatial distribution of 
illumination across the surface matrix is controlled using the same 
CA algorithm used to create the surface matrix. Illumination can 
also change in time, both in terms of quality (i.e., its spectral 
distribution), size and movement across the space, all at rates pre-
defined by the researcher. See Figure 2 for a few samples. 

It’s important to stress that, as in natural environments, each 
stimulus arising from each surface in Mosaic World is determined 
by the relative contribution of its reflectance and its illumination: 
Stimulus (S) = Reflectance (R) • Illumination (I). It is this 
ambiguous stimulus that is presented to the virtual agents, with 
the consequence that there is no direct way for the agent’s sensors 
to estimate a given surface’s type from the stimulus alone. 

2.2 Critters 
‘Critters’ are the inhabitants of Mosaic World. Every critter has 
field of view (the area it receives stimuli from the environment), 
and an orientation (the direction it is facing). Upon instantiation, 
all critters are given a certain amount of energy, which decreases 
in time. The amount of energy lost in each time-step is determined 
by the following: rate of motion (faster speeds cost more), turning 
(in increments of 90 degrees), eating (big ‘bites’ cost more: bite 
size is ‘chosen’ by the critter itself), and reproduction. Also, the 
larger a critter’s neural network structure, the more costly is each 

time-step. If a critter’s energy level drops to 0, it dies, giving it a 
strong incentive to gain energy by consuming surface reflectances 
(as described above), or by preying on other critters (even though 
all critters are instantiated as omnivores, they can become 
exclusively herbivores or carnivores in time). 

Critter population is maintained in Mosaic World through sexual 
and asexual reproduction. To facilitate sexual reproduction, 
critters are also instantiated with a transmittant colour, which can 
evolve, and can thus be used as a cue for recognising conspecifics 
(as well as predators and prey). Depending on the mode of 
reproduction, an offspring’s genome will either be a mutated 
version of its parent (asexual reproduction), or will be a mutated 
and recombined version of its parents’ genomes (sexual 
reproduction). The offspring’s starting energy is transferred from 
its parent/s (thus, reproduction costs energy). 

Each critter’s phenotype is determined by its genome, which is a 
conceptual entity, that defines all the traits of a critter: Visual 
system (all details regarding the receptors: position, tuning, peak, 
activity), 3D Neural network (number and position of hidden 
units, definition of connection weights: value, starting unit, 
ending unit or coordinate), transmittance (the critter’s colour). 
There is a one to one relationship between the genes in the 
genome and a critter’s phenotype. 

Each physical attribute of the critter is treated as an object, and 
each object can either mutate, or parts of it can be recombined 
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with comparable objects from other critters during sexual 
reproduction. Thus, the only time the genome is explicitly 
displayed is when a critter is saved for analysis and is stored in a 
text file (see summarised genome in Figure 3). Of course the most 
important aspect of each critter’s phenotype is its ‘visual brain’, 
which translates the ambiguous stimulus information into useful 
behaviour. 

 

Figure 3: Sample summarised critter genome 

2.2.1 Visual Brain 
An agent’s visual brain comprises a modified 3D feedforward 
neural network. The 3D network is composed of multiple 2D 
layers (see Figure 4 for illustration). The input layer is the visual 
layer, which contains receptors (these are essentially modified 
input units) and a health monitor unit, which receives the 
percentage of the critter’s remaining health. The hidden layers 
contain standard hidden units. The output layer contains output 
units, which determine the critter’s behaviour: turn left or right, 
move forward or stay in the same position, sexually reproduce 
with a critter standing where it is, asexually reproduce, bite 
surface and bite a critter standing where it is. Every unit in the 
network has an [x,y] coordinate relative to the critter’s centre, 
which defines its location in the layer it is placed in. Thus, an 
important and novel attribute of our design is that networks of 
vastly different architectures can be crossed over during sexual 
reproduction, as each network possesses the same virtual 
body/coordinate reference frame. 

The receptor’s position in the input layer also determines the 
location – relative to the critter’s centre – where it detects light 
from Mosaic World (i.e., its visual ‘receptive field’). How it 

responds to that light is determined by its spectral sensitivity 
function, as in natural systems, between 400nm-700nm. The 
receptor’s peak sensitivity can be for any wavelength within this 
range (at increments of 10nm). The receptor’s tuning defines its 
half bandwidth (i.e., the number of wavelengths to which it will 
respond). A receptor can be either active or inactive. Inactive 
receptors do not participate in subsequent processing, but are 
nonetheless inherited by offspring; these are discarded if inactive 
for a long period of evolutionary time. 

Every receptor has an adaptation factor, which is determined from 
one of the network’s output neurons, thus enabling the critter to 
adapt to different ranges of stimuli. A similar mechanism is 
employed in nature and enables humans to see both at night and 
during the day. 

The units of the network communicate through connection 
weights that can extend between units from higher layers to lower 
layers, and can also connect units to empty coordinates in the 
network (‘partial’ connections). Connections can be active, 
inactive, or completely nonexistent. Inactive, ‘partial’ or ‘missing’ 
connections do not participate in the feed-forward process. 
Connections are discarded if inactive for long periods of 
evolutionary time. 

 
Figure 4: ‘Visual Brain’ - 3D neural network. This brain has 
three layers (one hidden layer). The visual layer contains three 
receptors (one highly tuned, the other two possess lower 
tuning values). The visual layer is connected to the hidden 
layer, specifically to five hidden units and two empty 
coordinates (partial connections). The hidden layer is 
connected to the output layer 

2.3 Evolution 
To maintain an open-ended system, Mosaic World’s evolution 
utilises a genetic algorithm with no fixed population size and no 
explicit fitness function. The critters themselves decide when to 
reproduce (sexually or asexually) by activating the appropriate 
output neurons. Critters survive if they can eat good resources, 

Size: 1x1 

Transmittance wave function: 0.33, 0.35, 0.37, 0.40, 0.42,
0.44, 0.45, 0.46, 0.46, 0.47, 0.48, 0.50, 0.52, 0.54, 0.56, 0.58, 
0.57, 0.5, 0.53, 0.51, 0.49, 0.51, 0.52, 0.54, 0.55, 0.57, 0.58,
0.58, 0.59, 0.60, 0.61 

3D Neural network (partially connected): 

Visual layer: 3 units: 

- Health unit 

- Receptor 1: coordinate: [0,-1], peak: 680nm,
tuning: 0.01226, active. 

- Receptor 2: coordinate: [0,0], peak: 400nm, tuning:
0.02868, active. 

Hidden layer: 4 units: 

- Hidden unit 1: coordinate [-1,-1] 

- Hidden unit 2: coordinate [0,0] 

- Hidden unit 3: coordinate [2,0] 

- Hidden unit 4: coordinate [-1,1] 

Output layer: 7 units 

Active Connections: 33 

Unconnected connections: 1 
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avoid predators and stay on the world. Thus, there’s an implicit 
evolutionary selection pressure to improve all traits that increase 
such skills. For the population to survive, the virtual agents must 
balance reproduction with resource consumption. Otherwise, there 
may be too many critters for the world to sustain, or too few 
critters to maintain the population. 

Because at time-step 0 all critters are randomly instantiated, a 
statistical consequence of this is that the initial population 
sometimes dies. When this happens, a new population of random 
critters is instantiated, with the caveat that 20% are mutated 
clones of critters that showed general promising surviving skills (a 
combination of survival age and mating amount).  

Crossover takes place during sexual reproduction. During 
crossover, a random point is selected on each network layer of 
both mating critters. All 3D layers of each critter brain are ‘sliced’ 
at this point. These two parts are copied, and the result is 
combined to form the offspring’s genome. Not only does this 
process create novel patterns of node distributions, but it also 
creates connections between nodes that existed in neither parent. 
For instance, if a ‘partial’ connection is obtained from one parent, 
and a hidden node at the corresponding coordinate that previously 
lacked a connection, from the other parent, then this becomes a 
novel connection that didn’t exist in either parent previously. 
Crossover also combines the transmittance functions of both 
mating critters. 

Mutation takes place during sexual and asexual reproduction. 
Mutation in a genome occurs through several different ways: 1. 
Drift mutation causes a receptor to randomly switch positions in 
the visual layer (0.3% per receptor). 2. Peak mutation changes the 
receptor’s peak (2% per receptor). 3. Tuning mutation changes the 
value of the critter tuning (2% per receptor, changes by up to 0.2). 
4. Activation state mutation changes the state (active or inactive) 
of receptors and connections affected (0.3% per receptor and 
connection).  5. Structural Mutations that change the brain 
structure, such as 5a. Delete Receptor (0.3% per receptor), 5b. 
Delete Hidden Unit (deleting a hidden unit leaves unconnected 
connections; 0.3% per unit), 5c. Delete Connection (0.1% per 
connection), 5d. Add Connection (1%), 5e. Add Receptor (1%) 
and Add Hidden (1%). 6. Value mutations affect the value of the 
connection weights (changes by up to 1). And 7. Transmittance 
mutations affect the transmittance defining the colour of a critter 
(per wavelength, by up to 0.05). 

3. EXPERIMENT 
A principle hypothesis of Mosaic World is that critters that evolve 
within relatively ‘simple’ worlds composed of one uniform 
illuminant, where there is a simple one-to-one relationship 
between stimuli and their source, will survive less well in 
ambiguous environments, under multiple illuminants, where there 
is a many-to-one relationship between a stimulus and its source. 
In contrast critters that evolved within such complex worlds will 
survive well in these worlds.  To test this, agents were presented 
with a surface matrix under one illuminant, or under multiple 
illuminants. To survive critters would have to learn how and when 
to move, when to mate, how to avoid the world’s edge and its 
holes, as well as recognise positive resources and avoid bad ones. 
In this experiment, short wavelengths were ‘good’ (increased the 
critter’s health), and long wavelengths were ‘bad’ (decreased the 
critter’s health). Thus, agents needed to recognise surfaces that 

reflected predominantly short wavelengths (which would appear 
‘bluish’ to the human visual system) under multiple lights, and 
avoid those that would appear ‘reddish’ to human observers. 
Green, grey and purple surfaces, and every combination, as they 
reflect both short and long wavelengths to the same extent, would 
– on balance – offer no reward (as they would add as much to the 
health of the agent as they take away). Of course determining the 
identity of good and bad surfaces becomes increasingly difficult 
as the number of illuminants in the world increases, which 
increases the number of stimuli arising from each surface 
accordingly. 

Twelve randomly generated worlds were created using the 
identical methods and surface/illuminant statistics. Critters were 
evolved on all 12 worlds under the two different conditions: (1) 
constant illumination (a uniform illuminant with an intensity of 
0.6 at each wavelength), and (2) multiple illuminants that change 
in location and quality every 50 time steps. After 550,000 time 
steps, all 24 runs were stopped, and the 5 oldest critters were 
taken from each run. This criterion for selection is somewhat 
arbitrary, but there is no easy way to measure the fitness of 
evolved critters, and survival age seems to be positively correlated 
with fitness. 

A test world was created, and 3 copies of each of the 5 chosen 
critters were placed in it (for a total of 15 critters per test). The 
test world was run under uniform illumination, and under multiple 
illuminants. Every such run was performed 5 times, for a total of 
120 runs. The comparison of the critters was a simple survival 
test: the average survival time of the critters in the test world was 
calculated and compared. Critters that survived till the end of the 
test run (10,000 time steps) were assumed to have died then. 

4. RESULTS 
 
Table 1. Average survival times for critters in test worlds; 
broken down according to evolution with uniform or multiple 
illuminants 

Condition of 
evolution 

Average survival 
under a uniform 

illuminant 

Average survival 
under multiple 

illuminants 
Random critters 86.66 88.34 

Evolution under a 
uniform illuminant 3067.72 1252.8 

Evolution under 
multiple 

illuminants 
3520.43 1573.46 

 

Table 1 shows the resulting data of the average survival time of 
critters that evolved in multiple or uniform illuminant worlds 
tested under multiple and uniform illuminant test worlds. As can 
be seen in the first row, randomly instantiated critters (the control 
group) did not survive for long in either world. When comparing 
the second and third rows, it is also clear that critters that evolved 
under multiple illuminants survived longer than those that evolved 
under a uniform illuminant when tested in either test world. Thus, 
the critters with the best performance in all test worlds were 
critters that evolved under multiple illuminants. 
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Table 2. Average survival time for critters that evolved under 
multiple illuminants; broken down according to critters that 
evolved one and two receptors 

Number of visual 
receptors 

Survival with 
uniform 

illuminant 

Survival with 
multiple 

illuminants 
1 3185.55 1302.48 

2 3989.25 1952.83 
 

It is interesting to note that when evolved under uniform 
illumination, only 1 out of 12 test critters had more than one 
visual receptor. This was not the case, however, under multiple 
illuminant runs, where 5 out of the 12 test critters evolved 
multiple receptors. We therefore tested whether there is a 
behaviour value in adapting multiple receptor types by comparing 
the survival rates for critters with one or two receptors, which is 
shown in Table 2. As can be seen in column 1 of Table 2, the 
survival rate for single receptor critters that evolved in multiple 
illuminants worlds was very similar to the survival rate of critters 
that evolved under a single illuminant (and that also evolved a 
single receptor type). In contrast, critters that evolved two 
receptor types survived much longer on average - under both 
conditions, as is shown in column 2. Thus, adapting multiple 
receptor types, which is fundamental for colour vision, is 
important in more complex conditions of illumination, 
presumably because it enables critters to better recognise surfaces 
under more varied conditions. 

5. CONCLUSIONS 
The above experiments confirm the hypothesis that ambiguous 
environments provide a unique challenge that requires specific 
adaptations in order to survive and thrive. Once obtained, 
individuals possessing it in general are more adapted for 
ambiguous and non-ambiguous environments alike.  

Even though it is possible to view multiple illuminants as ‘noise’ 
that causes the critters to be more robust (and as a result, survive 
longer), we don’t believe this is the case. First, the generated 
effect of multiple illuminants is not random: there is a statistical 
regularity to it, and as a result, it is meaningful. Furthermore, 
critters that evolve under multiple illuminants tend to evolve very 
specific adaptations: the first receptor that is evolved (and is also 
evolved by critters that evolve under a uniform illuminant) peaks 
over short wavelengths: the range of ‘good resources’, and the 
second receptor peaks over the long wavelengths: the range of 
‘bad resources’ (data not shown). If the greater survival ability 
was only the result of ‘noise’, then we do not believe such specific 
adaptations would consistently emerge.  

Since the challenge of ambiguity is universal in natural 
environments, it is expected that using the Mosaic World 
framework experiments examining multiple aspects of natural 
vision can be run. By creating conditions inspired by their natural 
counterpart and seeing what strategies the evolved critters use to 
survive, it is anticipated that exciting and important insights into 
biological vision can be gained. Furthermore, using reverse 

engineering of the evolved critters, simple and efficient algorithms 
that can benefit all vision research may be derived. 
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